Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Med Chem ; 65(4): 2809-2819, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-2285958

ABSTRACT

Hexameric structure formation through packing of three C-terminal helices and an N-terminal trimeric coiled-coil core has been proposed as a general mechanism of class I enveloped virus entry. In this process, the C-terminal helical repeat (HR2) region of viral membrane fusion proteins becomes transiently exposed and accessible to N-terminal helical repeat (HR1) trimer-based fusion inhibitors. Herein, we describe a mimetic of the HIV-1 gp41 HR1 trimer, N3G, as a promising therapeutic against HIV-1 infection. Surprisingly, we found that in addition to protection against HIV-1 infection, N3G was also highly effective in inhibiting infection of human ß-coronaviruses, including MERS-CoV, HCoV-OC43, and SARS-CoV-2, possibly by binding the HR2 region in the spike protein of ß-coronaviruses to block their hexameric structure formation. These studies demonstrate the potential utility of anti-HIV-1 HR1 peptides in inhibiting human ß-coronavirus infection. Moreover, this strategy could be extended to the design of broad-spectrum antivirals based on the supercoiling structure of peptides.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Drug Design , HIV Envelope Protein gp41/antagonists & inhibitors , HIV-1/drug effects , Peptides/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Coronavirus Infections/metabolism , Dose-Response Relationship, Drug , HIV Envelope Protein gp41/metabolism , HIV-1/metabolism , Humans , Microbial Sensitivity Tests , Peptides/chemical synthesis , Peptides/chemistry , Structure-Activity Relationship
2.
J Med Virol ; 2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2232257

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the currently ongoing coronavirus disease 2019 (COVID-19) pandemic, has posed a serious threat to global public health. Recently, several SARS-CoV-2 variants of concern (VOCs) have emerged and caused numerous cases of reinfection in convalescent COVID-19 patients, as well as breakthrough infections in vaccinated individuals. This calls for the development of broad-spectrum antiviral drugs to combat SARS-CoV-2 and its VOCs. Pan-coronavirus fusion inhibitors, targeting the conserved heptad repeat 1 (HR1) in spike protein S2 subunit, can broadly and potently inhibit infection of SARS-CoV-2 and its variants, as well as other human coronaviruses. In this review, we summarized the most recent development of pan-coronavirus fusion inhibitors, such as EK1, EK1C4, and EKL1C, and highlighted their potential application in combating current COVID-19 infection and reinfection, as well as future emerging coronavirus infectious diseases.

4.
Commun Biol ; 5(1): 1179, 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2133651

ABSTRACT

Understanding the antigenic signatures of all human coronaviruses (HCoVs) Spike (S) proteins is imperative for pan-HCoV epitopes identification and broadly effective vaccine development. To depict the currently elusive antigenic signatures of α-HCoVs S proteins, we isolated a panel of antibodies against the HCoV-229E S protein and characterized their epitopes and neutralizing potential. We found that the N-terminal domain of HCoV-229E S protein is antigenically dominant wherein an antigenic supersite is present and appears conserved in HCoV-NL63, which holds potential to serve as a pan-α-HCoVs epitope. In the receptor binding domain, a neutralizing epitope is captured in the end distal to the receptor binding site, reminiscent of the locations of the SARS-CoV-2 RBD cryptic epitopes. We also identified a neutralizing antibody that recognizes the connector domain, thus representing the first S2-directed neutralizing antibody against α-HCoVs. The unraveled HCoVs S proteins antigenic similarities and variances among genera highlight the challenges faced by pan-HCoV vaccine design while supporting the feasibility of broadly effective vaccine development against a subset of HCoVs.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , Antigens, Viral , Epitopes , Antibodies, Neutralizing
5.
Adv Exp Med Biol ; 1366: 101-121, 2022.
Article in English | MEDLINE | ID: covidwho-1782743

ABSTRACT

Coronaviruses (CoVs) are enveloped RNA viruses that widely exist in the environment. Several CoVs possess a strong ability to infect humans, termed as human coronavirus (HCoVs). Among seven known HCoVs, SARS-CoV-2, SARS-CoV, and MERS-CoV belong to highly pathogenic HCoVs, which can cause severe clinical symptoms and even death. Especially, the current COVID-19 pandemic severely threatens human survival and health, which emphasizes the importance of developing effective CoV vaccines and anti-CoV agents to protect humans from HCoV infections. Coronavirus entry inhibitors can block various processes in viral entry, such as receptor binding, proteolytic activation of spike protein, or virus-cell membrane fusion. Coronavirus entry inhibitors, alone or in combination with other drugs, play important roles in the treatment of coronavirus diseases. Thus, we summarize and discuss the development of coronavirus entry inhibitors in this chapter.


Subject(s)
COVID-19 Drug Treatment , Middle East Respiratory Syndrome Coronavirus , Humans , Pandemics , SARS-CoV-2 , Virus Internalization
6.
Viruses ; 14(3)2022 03 06.
Article in English | MEDLINE | ID: covidwho-1732247

ABSTRACT

Our previous studies have shown that cholesterol-conjugated, peptide-based pan-coronavirus (CoV) fusion inhibitors can potently inhibit human CoV infection. However, only palmitic acid (C16)-based lipopeptide drugs have been tested clinically, suggesting that the development of C16-based lipopeptide drugs is feasible. Here, we designed and synthesized a C16-modified pan-CoV fusion inhibitor, EK1-C16, and found that it potently inhibited infection by SARS-CoV-2 and its variants of concern (VOCs), including Omicron, and other human CoVs and bat SARS-related CoVs (SARSr-CoVs). These results suggest that EK1-C16 could be further developed for clinical use to prevent and treat infection by the currently circulating MERS-CoV, SARS-CoV-2 and its VOCs, as well as any future emerging or re-emerging coronaviruses.


Subject(s)
COVID-19 Drug Treatment , Middle East Respiratory Syndrome Coronavirus , Humans , Lipopeptides/pharmacology , Palmitic Acid/pharmacology , SARS-CoV-2
7.
Viruses ; 14(3)2022 02 27.
Article in English | MEDLINE | ID: covidwho-1715777

ABSTRACT

In recent years, infectious diseases caused by viral infections have seriously endangered human health, especially COVID-19, caused by SARS-CoV-2, which continues to spread worldwide. The development of broad-spectrum antiviral inhibitors is urgently needed. Here, we report a series of small-molecule compounds that proved effective against human coronaviruses (HCoV), such as SARS-CoV-2 and its variants of concern (VOCs), including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), SARS-CoV, MERS-CoV, HCoV-OC43, and other viruses with class I viral fusion proteins, such as influenza virus, Ebola virus (EBOV), Nipah virus (NiV), and Lassa fever virus (LASV). They are also effective against class II enveloped viruses represented by ZIKV and class III enveloped viruses represented by vesicular stomatitis virus (VSV). Further studies have shown that these compounds may exert antiviral effects through a variety of mechanisms, including inhibiting the formation of the six-helix bundle, which is a typical feature of enveloped virus fusion with cell membranes, and/or targeting viral membrane to inactivate cell-free virions. These compounds are expected to become drug candidates against SARS-CoV-2 and other enveloped viruses.


Subject(s)
COVID-19 Drug Treatment , Rhodanine , Zika Virus Infection , Zika Virus , Humans , SARS-CoV-2
10.
Int J Mol Sci ; 22(21)2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1488619

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 infection poses a serious threat to global public health and the economy. The enzymatic product of cholesterol 25-hydroxylase (CH25H), 25-Hydroxycholesterol (25-HC), was reported to have potent anti-SARS-CoV-2 activity. Here, we found that the combination of 25-HC with EK1 peptide, a pan-coronavirus (CoV) fusion inhibitor, showed a synergistic antiviral activity. We then used the method of 25-HC modification to design and synthesize a series of 25-HC-modified peptides and found that a 25-HC-modified EK1 peptide (EK1P4HC) was highly effective against infections caused by SARS-CoV-2, its variants of concern (VOCs), and other human CoVs, such as HCoV-OC43 and HCoV-229E. EK1P4HC could protect newborn mice from lethal HCoV-OC43 infection, suggesting that conjugation of 25-HC with a peptide-based viral inhibitor was a feasible and universal strategy to improve its antiviral activity.


Subject(s)
Antiviral Agents/pharmacology , Hydroxycholesterols/chemistry , Lipopeptides/chemistry , SARS-CoV-2/drug effects , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Body Weight/drug effects , COVID-19/virology , Coronavirus 229E, Human/drug effects , Coronavirus 229E, Human/pathogenicity , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Coronavirus Infections/virology , Coronavirus OC43, Human/drug effects , Coronavirus OC43, Human/pathogenicity , Disease Models, Animal , Drug Synergism , Humans , Hydroxycholesterols/pharmacology , Hydroxycholesterols/therapeutic use , Lipopeptides/pharmacology , Lipopeptides/therapeutic use , Mice , Mice, Inbred BALB C , Polyethylene Glycols/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Survival Rate , Virus Internalization/drug effects , COVID-19 Drug Treatment
11.
J Virol ; 95(16): e0061721, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1486509

ABSTRACT

The current pandemic of COVID-19 is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 spike protein receptor-binding domain (RBD) is the critical determinant of viral tropism and infectivity. To investigate whether naturally occurring RBD mutations during the early transmission phase have altered the receptor binding affinity and infectivity, we first analyzed in silico the binding dynamics between SARS-CoV-2 RBD mutants and the human angiotensin-converting enzyme 2 (ACE2) receptor. Among 32,123 genomes of SARS-CoV-2 isolates (December 2019 through March 2020), 302 nonsynonymous RBD mutants were identified and clustered into 96 mutant types. The six dominant mutations were analyzed applying molecular dynamics simulations (MDS). The mutant type V367F continuously circulating worldwide displayed higher binding affinity to human ACE2 due to the enhanced structural stabilization of the RBD beta-sheet scaffold. The MDS also indicated that it would be difficult for bat SARS-like CoV to infect humans. However, the pangolin CoV is potentially infectious to humans. The increased infectivity of V367 mutants was further validated by performing receptor-ligand binding enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance, and pseudotyped virus assays. Phylogenetic analysis of the genomes of V367F mutants showed that during the early transmission phase, most V367F mutants clustered more closely with the SARS-CoV-2 prototype strain than the dual-mutation variants (V367F+D614G), which may derivate from recombination. The analysis of critical RBD mutations provides further insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin under negative selection pressure and supports the continuing surveillance of spike mutations to aid in the development of new COVID-19 drugs and vaccines. IMPORTANCE A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the pandemic of COVID-19. The origin of SARS-CoV-2 was associated with zoonotic infections. The spike protein receptor-binding domain (RBD) is identified as the critical determinant of viral tropism and infectivity. Thus, whether mutations in the RBD of the circulating SARS-CoV-2 isolates have altered the receptor binding affinity and made them more infectious has been the research hot spot. Given that SARS-CoV-2 is a novel coronavirus, the significance of our research is in identifying and validating the RBD mutant types emerging during the early transmission phase and increasing human angiotensin-converting enzyme 2 (ACE2) receptor binding affinity and infectivity. Our study provides insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin. The continuing surveillance of RBD mutations with increased human ACE2 affinity in human or other animals is critical to the development of new COVID-19 drugs and vaccines against these variants during the sustained COVID-19 pandemic.


Subject(s)
Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , COVID-19/transmission , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Gene Expression , Host-Pathogen Interactions/genetics , Humans , Kinetics , Molecular Dynamics Simulation , Phenylalanine/chemistry , Phenylalanine/metabolism , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/classification , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics , Valine/chemistry , Valine/metabolism , Virulence , Virus Attachment
13.
Acta Pharm Sin B ; 12(4): 1652-1661, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1336241

ABSTRACT

The development of broad-spectrum antivirals against human coronaviruses (HCoVs) is critical to combat the current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, as well as future outbreaks of emerging CoVs. We have previously identified a polyethylene glycol-conjugated (PEGylated) lipopeptide, EK1C4, with potent pan-CoV fusion inhibitory activity. However, PEG linkers in peptide or protein drugs may reduce stability or induce anti-PEG antibodies in vivo. Therefore, we herein report the design and synthesis of a series of dePEGylated lipopeptide-based pan-CoV fusion inhibitors featuring the replacement of the PEG linker with amino acids in the heptad repeat 2 C-terminal fragment (HR2-CF) of HCoV-OC43. Among these lipopeptides, EKL1C showed the most potent inhibitory activity against infection by SARS-CoV-2 and its spike (S) mutants, as well as other HCoVs and some bat SARS-related coronaviruses (SARSr-CoVs) tested. The dePEGylated lipopeptide EKL1C exhibited significantly stronger resistance to proteolytic enzymes, better metabolic stability in mouse serum, higher thermostability than the PEGylated lipopeptide EK1C4, suggesting that EKL1C could be further developed as a candidate prophylactic and therapeutic for COVID-19 and other coronavirus diseases.

14.
Signal Transduct Target Ther ; 6(1): 288, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1333906

ABSTRACT

The COVID-19 pandemic poses a global threat to public health and economy. The continuously emerging SARS-CoV-2 variants present a major challenge to the development of antiviral agents and vaccines. In this study, we identified that EK1 and cholesterol-coupled derivative of EK1, EK1C4, as pan-CoV fusion inhibitors, exhibit potent antiviral activity against SARS-CoV-2 infection in both lung- and intestine-derived cell lines (Calu-3 and Caco2, respectively). They are also effective against infection of pseudotyped SARS-CoV-2 variants B.1.1.7 (Alpha) and B.1.1.248 (Gamma) as well as those with mutations in S protein, including N417T, E484K, N501Y, and D614G, which are common in South African and Brazilian variants. Crystal structure revealed that EK1 targets the HR1 domain in the SARS-CoV-2 S protein to block virus-cell fusion and provide mechanistic insights into its broad and effective antiviral activity. Nasal administration of EK1 peptides to hACE2 transgenic mice significantly reduced viral titers in lung and intestinal tissues. EK1 showed good safety profiles in various animal models, supporting further clinical development of EK1-based pan-CoV fusion inhibitors against SARS-CoV-2 and its variants.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Caco-2 Cells , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Mice, Transgenic , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
15.
Cell Biosci ; 11(1): 128, 2021 Jul 08.
Article in English | MEDLINE | ID: covidwho-1301888

ABSTRACT

BACKGROUND: Our previous studies have shown that combining the antiviral lectin GRFT and the pan-CoV fusion inhibitory peptide EK1 results in highly potent inhibitory activity against SARS-CoV-2 infection. In this study, we aimed to design and construct a bivalent protein consisting of GRFT and EK1 components and evaluate its inhibitory activity and mechanism of action against infection by SARS-CoV-2 and its mutants, as well as other human coronaviruses (HCoVs). METHODS: The bivalent proteins were expressed in E. coli and purified with Ni-NTA column. HIV backbone-based pseudovirus (PsV) infection and HCoV S-mediated cell-cell fusion assays were performed to test their inhibitory activity. ELISA and Native-PAGE were conducted to illustrate the mechanism of action of these bivalent proteins. Five-day-old newborn mice were intranasally administrated with a selected bivalent protein before or after HCoV-OC43 challenge, and its protective effect was monitored for 14 days. RESULTS: Among the three bivalent proteins purified, GL25E exhibited the most potent inhibitory activity against infection of SARS-CoV-2 PsVs expressing wild-type and mutated S protein. GL25E was significantly more effective than GRFT and EK1 alone in inhibiting HCoV S-mediated cell-cell fusion, as well as infection by SARS-CoV-2 and other HCoVs, including SARS-CoV, MERS-CoV, HCoV-229E, HCoV-NL63 and HCoV-OC43. GL25E could inhibit authentic SASR-CoV-2, HCoV-OC43 and HCoV-229E infection in vitro and prevent newborn mice from authentic HCoV-OC43 infection in vivo. GL25E could bind to glycans in the S1 subunit and HR1 in the S2 subunit in S protein, showing a mechanism of action similar to that of GRFT and EK1 alone. CONCLUSIONS: Since GL25E showed highly potent and broad-spectrum inhibitory activity against infection of SARS-CoV-2 and its mutants, as well as other HCoVs, it is a promising candidate for further development as a broad-spectrum anti-HCoV therapeutic and prophylactic to treat and prevent COVID-19 and other emerging HCoV diseases.

16.
Chinese J. Clin. Pharmacol. Ther. ; 2(25):126-134, 2020.
Article in Chinese | ELSEVIER | ID: covidwho-682605

ABSTRACT

Recently, pneumonia caused by 2019 new coronavirus (SARS-CoV-2) outbroke in Wuhan, China, which has threatened people's health and lives and enormously influenced the people's daily life in China. However, there are currently no specific anti-SARS-CoV-2 drugs with explicit therapeutic efficacy. Some clinical drugs, which have been shown certain inhibitory activities for SARS-CoV-2 in vitro or have previously been reported to inhibit coronavirus infection, have been applied for clinical trials or tentative treatment of SARS-CoV-2 infected patients. From the perspective of exploring the new use of old drugs, this review mainly introduces characteristics, including mechanisms of action, in vitro antiviral effects and side effects, and research progress of these drugs, hoping to provide referential ideas for the treatment of SARS-CoV-2 infected patients.

17.
Cell Res ; 30(4): 343-355, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-30393

ABSTRACT

The recent outbreak of coronavirus disease (COVID-19) caused by SARS-CoV-2 infection in Wuhan, China has posed a serious threat to global public health. To develop specific anti-coronavirus therapeutics and prophylactics, the molecular mechanism that underlies viral infection must first be defined. Therefore, we herein established a SARS-CoV-2 spike (S) protein-mediated cell-cell fusion assay and found that SARS-CoV-2 showed a superior plasma membrane fusion capacity compared to that of SARS-CoV. We solved the X-ray crystal structure of six-helical bundle (6-HB) core of the HR1 and HR2 domains in the SARS-CoV-2 S protein S2 subunit, revealing that several mutated amino acid residues in the HR1 domain may be associated with enhanced interactions with the HR2 domain. We previously developed a pan-coronavirus fusion inhibitor, EK1, which targeted the HR1 domain and could inhibit infection by divergent human coronaviruses tested, including SARS-CoV and MERS-CoV. Here we generated a series of lipopeptides derived from EK1 and found that EK1C4 was the most potent fusion inhibitor against SARS-CoV-2 S protein-mediated membrane fusion and pseudovirus infection with IC50s of 1.3 and 15.8 nM, about 241- and 149-fold more potent than the original EK1 peptide, respectively. EK1C4 was also highly effective against membrane fusion and infection of other human coronavirus pseudoviruses tested, including SARS-CoV and MERS-CoV, as well as SARSr-CoVs, and potently inhibited the replication of 5 live human coronaviruses examined, including SARS-CoV-2. Intranasal application of EK1C4 before or after challenge with HCoV-OC43 protected mice from infection, suggesting that EK1C4 could be used for prevention and treatment of infection by the currently circulating SARS-CoV-2 and other emerging SARSr-CoVs.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/prevention & control , Lipopeptides/pharmacology , Membrane Fusion , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Administration, Intranasal , Amino Acid Sequence , Animals , Betacoronavirus/drug effects , COVID-19 , Cell Fusion , Chlorocebus aethiops , HEK293 Cells , Humans , Mice , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Sequence Alignment , Structure-Activity Relationship , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL